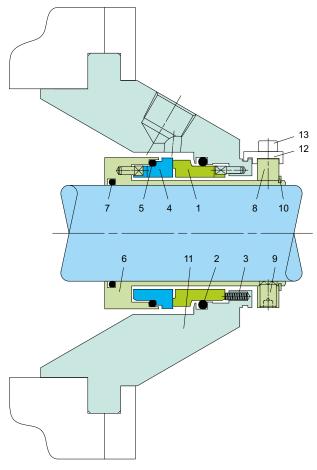
VTX Single Seals

For Eccentric Screw Pumps - Standard Cartridge Seals



Product Description

- 1. Single seal configuration
- 2. Balanced design
- 3. Independent of direction of rotation
- 4. Cartridge construction

Technical Features

- 1. Ideal for use in process pump standardization
- 2. O-ring is dynamically loaded to prevent shaft damage.
- Dimensional modification of the stuffing box chamber is not required due to short radial installation height
- Ideal to convert and retrofit pumps with packings and large volume OEM production
- Cartridge unit factory assembled for easy installation, which reduces downtime
- 6. Rugged design for long operating life

Note: The item numbers as depicted above are based on our technical experience and knowledge and are placed in the chronological order of their assembly procedure

Item	Description
1	Seal face
2, 5, 7	O-ring
3	Spring
4	Seat
6	Shaft sleeve
8	Drive collar
9	Set screw

Item	Description
10	Snap ring
11	Cover
12	Assembly fixture
13	HSH Cap Screw

VTX

CTX seals with modified cover for eccentric screw pumps.

Example Pumps: Seepex BN, Netzsch NM...S, NM...B, NE (P), Allweiler AE, AEB, AED, Robbins & Myers / Moyno 2000 CC, and Mono E-Range.

Typical Industrial Applications		
Breweries Chemical Cosmetic Fertiliser	Sugar production Water & waste water	
Food & beverage Oil & gas Paint Pharmaceutical Pulp & paper		

	Materials		
Seal face	Silicon carbide (Q1), Carbon graphite resin impregnated (B), Tungsten carbide (U2)		
Seat	Silicon carbide (Q1)		
Secondary seals	FKM (V), EPDM (E), FFKM (K), Perflourocarbon rubber/PTFE (U1)		
Springs	Hastelloy® C-4 (M)		
Metal parts	CrNiMo steel (G), CrNiMo cast steel (G)		

Performance Capabilities		
VTX-SN, -SN	/TX-SN, -SNO, -QN, -TN	
Sizes	Upto 100 mm (Upto 4.000") Other sizes on request	
Temperature	t =-40 °C+220 °C (-40°F+428 °F) (Check O-ring resistance)	
Sliding face material combination BQ1		
Pressure	p ₁ = 25 bar (363 PSI)	
Speed	16 m/s (52 ft/s)	
Sliding face material combination Q1Q1 or U2Q1		
Pressure	p ₁ = 12 bar (175 PSI)	
Speed	10 m/s (33 ft/s)	

Permissible Axial Movement

 $d_1 < 75$ mm = ± 1.0 mm, $d_1 > 75$ mm = ± 1.5 mm

