CTX ANSI Single Seals

Product Description

- 1. Single seal configuration
- 2. Balanced design
- 3. Independent of direction of rotation
- 4. Cartridge construction
- 5. Available for standard (CTX-ASPN) and big bore (CTX-ABPN) seal chambers
- 6. Single seals with flush (-ASPN, -ABPN) and with quench combined with lip seal (-ASQN, - ABQN) or throttle ring (-ASTN, -ABTN)

Standard Cartridge Seals

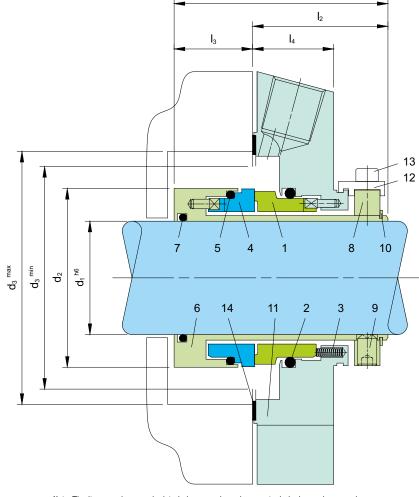
Technical Features

- 1. Ideal for use in ANSI process pumps
- 2. O-ring is dynamically loaded to prevent shaft damage.
- 3. Dimensional modification of the stuffing box chamber is not required due to short radial installation height
- 4. Ideal to convert and retrofit pumps with packings and large volume OEM production
- Cartridge unit factory assembled for easy installation, which reduces downtime
- 6. Rugged design for long operating life

Typical Industrial Applications								
ANSI process pumps Acids Aqueous solutions Caustics Chemicals Crystallizing fluids Fertilizer Food and beverage	Hydrocarbons Lubricating liquid Marine Petrochemical Pharmaceutical Solvents Water and waste water							

Standards

ANSI

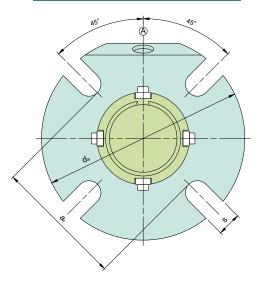

Materials							
Seal face	Silicon carbide (Q1), Carbon graphite resin impregnated (B), Tungsten carbide (U2)						
Seat	Silicon carbide (Q1)						
Secondary seals	FKM (V), EPDM (E), FFKM (K), Perflourocarbon rubber/PTFE (U1)						
Springs	Hastelloy [®] C-4 (M)						
Metal parts	CrNiMo steel (G), CrNiMo cast steel (G)						

Performance Capabilities						
CTX-ASPN, -ABPN, -ASTN, -ABTN, -ASQN, -ABQN						
Sizes d ₁ = 1.000" 3.750" Other sizes on request						
Temperature	t = -40°C+220°C (-40°F+428°F) (Check O-ring resistance)					
Sliding face material combination BQ1						
Pressure	p ₁ = 25 bar (363 PSI)					
Speed	16 m/s (52 ft/s)					
Sliding face material combination Q1Q1 or U2Q1						
Pressure	p ₁ = 12 bar (175 PSI)					
Speed	10 m/s (33 ft/s)					

Permissible Axial Movement:

d₁< 2.935" = ± 0.039", d₁ ≥ 2.935" ± 0.059

ltem	Description
10	Snap ring
11	Cover
12	Assembly fixture (remove after installation)
13	HSH Cap Screw
14	Gasket
16	Lip seal (-QN), throttle ring (-TN)



 \mathbf{I}_1

Note: The item numbers as depicted above are based on our technical experience and knowledge and are placed in the chronological order of their assembly procedure.

Item	Description
1	Seal face
2, 5, 7	O-ring
3	Spring
4	Seat
6	Shaft sleeve
8	Drive collar
9	Set screw

Installation, Details, Options

1.625

1.750

1.875

2.000

2.125

2.250

2.375

2.500

2.625

2.750

3.000

3 250

3.750

2.340

2.461

2.583

2.677

2.834

2.960

3.070

3.212

3.338

3.660

3.937

4.189

4.689

2.421

2.500

2.661

2.756

2.913

3.039

3.125

3.291

3.417

3.740

4.016

4.268

4.750

2.795

2.953

3.070

3.189

3.583

3.583

3.590

3.937

4.016

4.370

4.724

4.921

5.433

2.638

2.638

2.638

2.638

2.638

2.638

2.638

2.638

2.638

2.638

3.307

3 307

1.669

1.669

1.669

1.669

1.669

1.669

1.669

1.669

1.669

1.929

2.260

2 260

2.260

0.969

0.969

0.969

0.969

0.969

0.969

0.969

0.969

0.969

0.709

1.047

1.047

1.047

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.260

1.000

1.000

1.000

3.130

3.012

3.071

3.130

3.130

3.130

3.130

3.130

3.130

3.858

3.858

2.102

1.984

2.043

2.102

2.102

2.102

_

2.102

2.102

2.102

2.516

2.516

1.028

1.028

1.028

1.028

1.028

1.028

_ 1.028

1.028

1.028

1.343

1.343

3.030

3.228

3.190

3.430

3.820

3.858

4.020

4.528

4.528

4.646

5.000

5.315

5.827

4.921

5.118

5.118

5.472

5.512

5.866

6.181

6.693

6.378

7.480

7.835

7.830

8.189

0.551

0.559

0.551

0.630

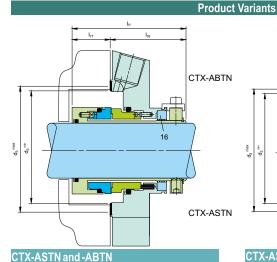
0.650

0.650

0.709

0.709

0.630


0.709

0.709

0 709

0.866

3/8 NPT

Single seal for operation with unpressurized quench for standard (S) and big bore (B) seal chambers. Same as CTX-ASPN and -ABPN but with throttle ring (item 16). The cover has auxiliary connections for flushing and quench. Throttle ring: PTFE carbongraphite reinforced (T12).

47 ke CTX-ABQN rth ፼∍ਗ਼ 16 CTX-ASQN

CTX-ASQN and -ABQN

Single seal for operation with unpressurized quench for standard (S) and big bore (B) seal chambers. Same as CTX-ASPN and -ABPN version but with lip seal (item 16) at the atmospheric side. The cover has auxiliary connections for flushing and quench.

Lip seal: NBR (P), FKM (V), PTFE carbon reinforced (T3)

						Din	nension	al Data						
BIG BORE : Dimensions in inch														
d ₁	d ₂	$d_3 \min$	$d_3 \max$	I_1	l ₂	I 3	I ₄	I ₁₅	I ₁₆	I ₁₇	a ₁	da	s	Connection
1.000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.125	1.713	1.752	2.795	2.638	1.669	0.969	1.000	2.937	1.909	1.028	3.311	4.500	0.437	1/4 NPT
1.250	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.375	1.960	2.000	3.189	2.638	1.669	0.969	1.000	2.947	1.919	1.028	3.543	5.118	0.437	1/4NPT
1.500	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.625	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1.750	2.461	2.500	4.055	2.638	1.669	0.969	1.000	3.012	1.984	1.028	4.567	6.496	0.559	3/8 NPT
1.875	2.583	2.661	3.937	2.638	1.669	0.969	1.000	3.071	2.059	1.012	4.409	5.984	0.551	3/8 NPT
2.000	2.677	2.756	4.567	2.638	1.929	0.709	1.000	3.130	2.102	1.028	4.882	6.260	0.551	3/8 NPT
2.125	2.834	2.913	4.528	2.638	1.945	0.639	1.276	3.130	2.102	1.028	5.276	6.890	0.709	3/8 NPT
2.250	2.960	3.093	4.409	2.638	1.945	0.693	1.276	3.130	2.102	1.028	4.685	6.417	0.709	3/8 NPT
2.500	3.212	3.299	5.276	2.638	1.919	0.719	1.250	3.130	2.102	1.028	5.512	7.795	0.709	3/8 NPT
2.625	3.338	3.170	5.118	2.638	1.919	0.719	1.250	3.130	2.102	1.028	5.354	6.890	0.709	3/8 NPT
2.750	3.660	3.740	5.236	2.638	1.945	0.693	1.276	3.130	2.102	1.028	5.512	7.480	0.630	3/8 NPT
3.000	3.937	4.016	5.512	3.307	2.276	1.031	1.276	3.858	2.516	1.343	5.906	8.228	0.650	3/8 NPT
3.250	-	-	-	-	-	-	-	-	-	-	-	-	-	-
STANDA		RE : Dim	ensions	in inch										
d ₁	d ₂	$d_3 \min$	d ₃ max	I ₁	l ₂	I ₃	I 4	I ₁₅	I ₁₆	I ₁₇	a ₁	da	s	Connection
1.000	1.693	1.732	2.205	2.638	1.669	0.969	1.000	2.937	1.909	1.028	2.756	3.937	0.433	1/4 NPT
1.125	1.713	1.752	2.205	2.638	1.669	0.969	1.000	2.937	1.909	1.028	2.440	4.134	0.437	1/4 NPT
1.250	1.969	2.008	2.402	2.638	1.669	0.969	1.000	3.130	2.102	1.028	2.638	4.252	0.433	1/4 NPT
1.375	1.961	2.000	2.402	2.638	1.669	0.969	1.000	2.947	1.919	1.028	2.760	4.213	0.437	1/4 NPT
1.500	2.200	2.244	2.717	2.638	1.669	0.969	1.000	3.130	2.102	1.028	2.950	4.488	0.551	3/8 NPT

3.307 Note: Additional technical & dimensional information will be provided on request.

The specifications, drawings, images etc included in this catalogue are intended to be generic and must be interpreted as equivalent or functionally equivalent, more specifically the performance capabilities mentioned in this catalogue is based on optimum values, however the performance of the product is dependent on size, material of construction, media, pressure, temperature, sliding velocity etc and it shall vary from size to size or application to application. Customers are requested to consult with Sealmatic before employing the product from this catalogue for any application.